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Abstract :  Online Social Networks (OSNs) have become fundamental parts of our online lives, and their popularity is increasing at a 

surprising rate every day. Growing popularity of Twitter has attracted the attention of attackers who attempt to manipulate the features 

provided by Twitter to gain some advantage, such as driving Twitter users to other websites that they post as short URLs (Uniform 

Resource Locators) in their tweets. Even short URLs are also used to avoid sharing overly long URLs and save limited text space in 

tweets. Significant numbers of URLs shared in the OSNs are shortened URLs. Despite of its potential benefits from genuine usage, 

attackers use shortened URLs to hide the malicious URLs, which direct users to malicious pages. Although, OSN service providers and 

URL shortening services utilize certain detection mechanisms to prevent malicious URLs from being shortened, research has found that 

they fail to do so effectively. In this paper, we developed mechanism to develop a machine learning classifier which detect malicious short 

URLs. And comparative analysis of detection rate with various classification algorithm, and but also with online detection on Virus 

Total. 
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________________________________________________________________________________________________________ 

 

I. INTRODUCTION 

In the age of web 2.0, information is contained in the form of webpages and shared via Online Social Networks (OSNs), emails, 

messages, and texts. OSN is a platform to connect and communicate with each other and share knowledge, information, news, 

announcements, etc. While doing so, people share URLs (Uniform Resource Locator) of the webpages that possess the information. 

However, URL sharing can be problematic because of its length; some URLs are overly long and complicated. One particular OSN that is 

very famous as information sharing social network is Twitter [1]. Twitter is a microblogging social network that allows users to post 

messages up to 140 characters known as tweets. It is difficult to share long URLs because of this restriction. This led to the popularity of 

URL shortening services on Twitter. URL shortening services take, usually a long URL from users, and create a short URL alias for that 

long URL. The short URL can then be shared among friends easily. When other users visit the short URL, they will be directed to the 

shortening services upon which users are redirected to the original long URL Landing page.  

There are several techniques to implement a URL shortening. Keys can be generated in base 36, assuming 26 letters and 10 numbers. In 

this case, each character in the sequence will be 0, 1, 2, ..., 9, a, b, c, ..., y, z. Alternatively, if uppercase and lowercase letters are 

differentiated, then each character can represent a single digit within a number of base 62 (26 + 26 + 10). In order to form the key, a hash 

function can be made, or a random number generated so that key sequence is not predictable. Or users may propose their own keys. For 

example, http://example.com/product?ref=01652type=shirt can be shortened to http://tinyurl. com/exampleshirt. Not all protocols are capable 

of being shortened as of 2011, although protocols such as http, https, ftp, ftps, mailto, mms, rtmp, rtmpt, ed2k, pop, imap, nntp, news, ldap, 

gopher, dict and dns  are being addressed by such services as URL Shortener. Typically, data: and javascript: URLs are not supported for 

security reasons.  Some URL shortening services support the forwarding of mailto URLs, as an alternative to address munging, to avoid 

unwanted harvest by web crawlers or bots. This may sometimes be done using short, CAPTCHA-protected URLs, but this is not common. 

Makers of URL shorteners usually register domain names with less popular or esoteric Top-level domains in order to achieve a short URL 

and a catchy name, often using domain hacks. This results in registration of different URL shorteners with a myriad of different countries, 

leaving no relation between the country where the domain has been registered and the URL shortener itself or the shortened links. Toplevel 

domains of countries such as Libya (.ly), Samoa (.ws), Mongolia (.mn), Malaysia (.my) and Liechtenstein (.li) have been used as well as 

many others. In some cases, the political or cultural aspects of the country in charge of the top-level domain may become an issue for users 

and owners,[4] but this is not usually the case. Tinyarro.ws, and qoiob.com use Unicode characters to achieve the shortest URLs possible, 

since more condensed URLs are possible with a given number of characters compared to those using a standard Latin alphabet. 

 

II. RELATED WORK 

URL shortening services take as input a long URL (e.g. http://blog.bitly.com/post/138381844/spamand-malware-protection) and generates 

a short URL (e.g. bit.ly/RSwVGo) in return. Short URL so generated redirects to the same long URL but looks random and unrelated to the 

actual link. Imposed character limit has lead to immense popularity of such services in social media landscape. Due to their ubiquitous usage, 

these services have been hit by adversaries to obfuscate and disseminate malicious content. This section presents the work done in 

understanding the usage pattern, behavior, and misuse of short URLs. 

 

1. Malicious Long URL Characterization /Detection 

A number of studies have been conducted to understand the propagation of spam on OSM, many of which revealed heavy usage of URLs 

to spread malicious content. Benevenuto et al. in their research identified distinctive features to detect spammers on Twitter [2]. Researchers 

also evaluated the effectiveness of popular blacklists in evading spam and observed it to be inefficient. On Twitter, checking blacklists 

becomes even slower because of the URL shortening services used to obfuscate long URLs. Using these services, a spammer can complicate 

the process of detection by using chains of multiple shortenings [4]. Ma et al. proposed an approach to detect malicious URLs based on their 

lexical and host based features and achieved an accuracy close to 95% [5]. 

http://www.jetir.org/
http://example.com/product
http://tinyurl/


© 2018 JETIR April 2018, Volume 5, Issue 4                                                             www.jetir.org  (ISSN-2349-5162)  
 

JETIR1804305 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 435 
 

Thomas et al. in 2011 developed a system called Monarchwhich classifies a URL submitted to any web service as malicious or benign in 

real time [1]. This system relies on the features of URL landing page (like page content, hosting infrastructure, etc.) and detected malicious 

links with an accuracy close to 91%. In year 2012, Aggarwal et al. also proposed a real time phishing detection system for Twitter, called 

PhishAri [3]. Authors coupled the Twitter and URL based features to classify phishing tweets and achieved an accuracy of 92.52%. In 

another real time suspicious URL detection technique on Twitter proposed by Lee et al., authors addressed the problem of conditional URL 

redirects [6]. A combined feature set of correlated URL redirects and tweet context information was used and authors attained an accuracy of 

86.3%. 

 

2. Short URL Analysis 

With the introduction of short URLs in OSM, a comparative study is necessary to be able to understand the level of acceptance of short 

URLs over long URLs. Kandylas et al. performed a comparative study of long and short Bitly URLs propagation on Twitter and found that 

Bitly links received orders of magnitude more clicks than an equal random set of long URLs [5]. To further comprehend short URL 

distinctive characteristics, Antoniades et al. studied the lifetime of short URLs which revealed that the life span of 50% short URLs exceeds 

100 days [3]. 

Other than this generic analysis, Neumann et al. looked at malicious short URLs in emails and highlighted their privacy and security 

implications [1]. Chhabra et al. also gave an overview of evolving phishing attacks through short URLs on Twitter and found that phishers 

use URL shorteners not only to gain space but hide their malicious links [13]. Their results show that most of the tweets containing phishing 

URLs comes from inorganic (automated) accounts. Later in year 2012, Klien et al. presented the global usage pattern of short URLs by 

setting up their own URL shortening service and found 80% short URL content to be spam related [2]. 

In year 2013, Maggi et al. performed a large scale study on 25 million short URLs belonging to 622 distinct URL shortening services [4]. 

Their results highlight that the countermeasures adopted by these services to detect spam are not very effective and can be easily by-passed. 

Experimental results from their data shows that Bitly allow users to shorten malicious links and does not include any initial level lightweight 

check to prevent it (though detects it after some time). Unlike their study which focused on multiple URL shorteners, our research is an in 

depth analysis of the effectiveness of a single URL shortener. Another scheme was proposed by Yoon et al. in year 2013 about using relative 

words of target URLs in short URLs [14]. This can give hints to user to guess the target URL, making it comparatively safe from phishing 

attacks. 

 

3. Malicious Short URL Characterization / Detection 

There is little research done in the area of malicious short URL characterization. One such work that presents short URL based features to 

detect malicious accounts is given by Wang et al. in year 2013 [7]. In their experiment, they investigated the creators of 600,000 short Bitly 

URLs and associated click traffic from different countries and referrers. Based on the analysis, they classify a link as spam / non-spam using 

only 3 click traffic based features with maximum accuracy of 90.81%, but ignored all short URLs with zero clicks. Our study on the other 

hand incorporates all URLs irrespective of their click state. In addition, their results reveal that legitimate Bitly users also generate spam and 

most clicks on short malicious URLs comes from popular websites. After reviewing the above literature, it is evident that a lot of work has 

been done in the identification and analysis of malicious URLs. Surprisingly, very little work has been done in analyzing only suspicious 

short URLs to expose the gaps in security mechanisms adopted by a specific URL shortener. Our work significantly differs from the prior 

studies, as we focus on understanding in depth, the loopholes in spam detection mechanisms of a URL shortening service. We also propose 

and evaluate a semi supervised classification framework for spam detection in URL shorteners. 

 

III. IMPLEMENTATION 

1. Architecture of The System 

Following modules are consist in Architecture. 

i. Streaming data collection. 

ii. Data cleaning. 

iii. Extracting short URLS. 

iv. Extracting features for short URLS. 

v. Labelling class name, (benign, malicious). 

vi. Classification. 

vii. Virus Total detection. 

viii. Comparing both the results. 

http://www.jetir.org/
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2. Streaming data collection.(Short URLs) 

Streaming HTTP protocol to deliver data through an open, streaming API connection. Rather than delivering data in batches through 

repeated requests by your client app, as might be expected from a REST API, a single connection is opened between your app and the API, 

with new results being sent through that connection whenever new matches occur. This results in a low-latency delivery mechanism that can 

support very high throughput. 

 

2.1 Configure your stream   

If you are using a PowerTrack or Replay stream, you need to set up some rules to define what content should be delivered through your 

stream. You can find out more about the PowerTrack rules syntax by reading our documentation on Premium Operators. After you have 

configured your stream, you are ready to connect. 

 

2.2 Connect to the API  

To open the data stream to have Tweets delivered, you need to send a connection request to the API. In the streaming model, this connection 

opens up the pipeline for data to be delivered to you as it happens, and will exist for an indefinite period of time. See the documentation for 

the specific APIs for information on establishing the connection. 

 

2.3 Consume the data as its delivered  

Once the connection is established, the stream sends new Tweets through the open connection as they happen, and your client app should 

read the data off the line as it is received. Your client app will need to recognize and handle various types of messages, which are described 

in our documentation below. 

 

 

2.4 When disconnected, reconnect to the API  

nevitably, at some point the connection to the stream will close a disconnection. With realtime streams, it is important to understand that you 

may be missing data any time you are disconnected from the stream. Whenever a disconnection occurs, your client app must restart the 

process by establishing a new connection. Additionally, to ensure that you do not miss any data, you may need to utilize a Redundant 

Connection, Backfill, or a Replay stream to mitigate or recover data from disconnections from the stream. 

 

3. Extraction of features and data labeling  

The data collection is done 25 days continuesly. After which we collected 2280 short URLS, which consist of 27 character length. To extract 

the features of this 2280 short urls we used selenium webdriver of firefox webbrowser. 

 

 

http://www.jetir.org/
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Figure 3.2: Lexical features of malicious URL [12] 

 

Table 3.1: Common URL based features [13] 

Common URL Based Features 

Feature Example Link 

Redirect Using 

// 
http://imessageaudits.org/profile,mail.buse@example.com 

Extremely Long 

URL 

https://docs.google.corn.alpo.edunorms/c1/17,MsBmbra4tvu3VqcXM3hux.n.yuU0

B.TK 

@ Symbol in 

the URL 
http://imessageaudits.org/profile,mail.buse@example.com 

- Separator http://irstax. wap-kacom/index.x.1 

Sub/Multisub 

Domains 
http://www.grandimperial.com.myN2/en/ 

Nonstandard 

Port 
http://wwwbelcotech.com:320001maillwaithtml 

IP Address in 

the URL 
http://194.78.154.195/CFIDE/servicesAabanquepostale.html 

HTTPS within 

URL 
http://www.rorna.md/templates/systern/httpshmv2..u.corn.brlatendimentol 

 

Table 3.2: Features collected from URLs 

Collected Features 

dots  at  Fulllenght  query 

equal  no of a tag  protocol  filename 

question  no of img  protocollength  filenamelength 

colon  no of link  authority  ref 

underscore  no of meta  codepoint  dport 

dash  no of script  host  hash code 

ampersand  no of div  hostlength  classname 

percentage  no of form  port 
 

dollar  Website  path 
 

Hash  int count  pathlength 
 

 

4.  Selection of Features and building Dataset 

We obtained features related to short URLs, which are redirected when opened into a browser. We find out 37 features for 2280 short 

URLs, when they redirected. The differentiation of URLs is done by Benign and Malicious labeling class. We have made balanced dataset 

from which 1240 URLs are Benign and 1240 URLs are Malicious. 

 

 

http://www.jetir.org/
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5. Machine Learning Classification 

Now we describe the mechanisms used in our classification of malicious short URLs. The experiments involved a 3 step process – i) 

creating a labeled dataset, ii) training the suitable machine learning classifier, and iii) testing an unlabeled dataset on the trained classifier. In 

order to assess the most appropriate and efficient mechanism to detect malicious short URLs, we inspected various machine learning 

classifiers which were best suited for our study. For this, we used the popular classification algorithms implemented in Weka software 

package [8]. Weka is an open source collection of machine learning classifiers for data mining tasks. Now, we give a brief description about 

these classifiers. 

 

5.1 Naive Bayes  

It is a simple probabilistic classifier based on the Bayes’ theorem. It assumes all classification features to be independent of one another 

and works best when the dimensionality of inputs is very high. An advantage of using this model is that it does not have a large training data 

requirement for parameter estimation and classification. It uses variance of variables in each class and is also not sensitive to irrelevant 

features. 

 

Bayesian formula can be written as [12]: 

       
               

    
 

where,  

• P(H) is the probability of hypothesis H being true. This is known as the prior 

  probability. 

 

• P(E) is the probability of the evidence(regardless of the hypothesis). 

 

• P(E|H) is the probability of the evidence given that hypothesis is true. 

 

• P(H|E) is the probability of the hypothesis given that the evidence is there. The basic idea of Bayess rule is that the         outcome 

of a hypothesis or an event (H) can be predicted based on some evidences (E) that can be observed from the Bayessrule [13]. 

 

5.2 J48  

It is a popular classification method that uses decision tree as a predictive model. It uses a rule based approach to observe data features 

and make inferences about item’s target value. Decision Tree starts at the root and makes binary (yes / no) decisions at each level until it 

reaches the leaf node. 

 

Algorithm [9] J48: 

INPUT 

D // Training data 

OUTPUT 

T // Decision tree 

DTBUILD (*D) 

T = Null; 

T = Create root node and label with splitting attribute; 

T = Add arc to root node for each split predicate and label; 

For each arc do 

D = Database created by applying splitting predicate to D; 

If stopping point reached for this path, then 

T= Create leaf node and label with appropriate class; 

Else 

T = DTBUILD (D); 

T = Add T to arc; 

While building tree J48 ignores the missing value. J48 allows classification via 

either decision tree or rules generated from them [10] [11]. 

 

5.3 AdaboostM1 

Every learning algorithm tends to suit some problem types better than others, and typically has many different parameters and 

configurations to adjust before it achieves optimal performance on a dataset, AdaBoost (with decision trees as the weak learners) is often 

referred to as the best out-of-the-box classifier.  When used with decision tree learning, information gathered at each stage of the AdaBoost 

algorithm about the relative 'hardness' of each training sample is fed into the tree growing algorithm such that later trees tend to focus on 

harder-to-classify examples. 

AdaBoost, short for Adaptive Boosting, is a machine learning meta-algorithm formulated by Yoav Freund and Robert Schapire, who won 

the 2003 Gdel Prize for their work. It can be used in conjunction with many other types of learning algorithms to improve performance. The 

output of the other learning algorithms (’weak learners’) is combined into a weighted sum that represents the final output of the boosted 

classifier. AdaBoost is adaptive in the sense that subsequent weak learners are tweaked in favor of those instances misclassified by previous 

classifiers. AdaBoost is sensitive to noisy data and outliers. In some problems it can be less susceptible to the overfitting problem than other 

learning algorithms. The individual learners can be weak, but as long as the performance of each one is slightly better than random guessing, 

the final model can be proven to converge to a strong learner. Every learning algorithm tends to suit some problem types better than others, 

and typically has many different parameters and configurations to adjust before it achieves optimal performance on a dataset, AdaBoost 

(with decision trees as the weak learners) is often referred to as the best out-of-the-box classifier.[20][21] When used with decision tree 

learning, information gathered at each stage of the AdaBoost algorithm about the relative ’hardness’ of each training sample is fed into the 

http://www.jetir.org/
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tree growing algorithm such that later trees tend to focus on harder-to-classify examples. AdaBoost refers to a particular method of training a 

boosted classifier. A boost classifier is a classifier in the form. 

 

FT( ) ∑      
 

   
 

 

IV. EXPERIMENTAL RESULTS 

1. Comparison of Classifiers 

We have made balanced dataset from which 1240 URLs are Benign and 1240 are Malicious. according to their class name, we classify 

them. It was found that all three classifiers have better results on dataset. After calculating Accuracy and Error for all three classifiers, It was 

found that, Naive Bayes have highest Accuracy and lowest Error compare to J48 and AdaboostM1 with 83.37% and 16.62% respectively. 

The following table shows the calculation and comparison of classifiers. 

 

Table 4.1: The Table Shows Accuracy and Error of Classifiers 

No. Classifier Accuracy Error 

1 Naive Bayes 83.37% 16.62% 

2 J48 83.15% 16.84% 

3 AdaboostM1 83.11% 16.88% 

 

 
Figure 4.1:  Comparison of Classifiers 

 

2. Performance of Virus Total 

VirusTotal not only tells you whether a given antivirus solution detected a submitted file as malicious, but also displays each engine’s 

detection label (e.g., IWorm.Allaple.gen). The same is true for URL scanners, most of which will discriminate between malware sites, 

phishing sites, suspicious sites, etc. Some engines will provide additional information, stating explicitly whether a given URL belongs to a 

particular botnet, which brand is targeted by a given phishing site, and so on. We scanned more than 2200 of URLs and get 45.05% of 

accuracy only. 

 
Figure 4.2: Online evaluated result of Virus Total 

 

3. Comparison between Classifiers and Virus Total 

We developed both techniques, Machine Learning Classification as well as Virus Total URL scanner, using Weka and Virus Total API to 

find Malicious Short URLs. In our analysis we found that, the Machine Learning Classification has best option to find malicious URLs. In 

our comparative analysis Naive Bayes classifier has best among all algorithms and Virus Total. Below table shows the comparative analysis 

of Classifiers and Virus Total. 

http://www.jetir.org/
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Table 4.2: Comparison between Classifiers and Virus Total 

 Classifiers Anti 

Virus 

Engine 

Naïve 

Bayes 

J48 AdavoostM1 Virus 

Total 

Accuracy 83.37% 83.15% 83.11% 45.05% 

 

 
Figure 4.3: Comparative analysis of Classifiers and Virus Total 

 

V. CONCLUSION 

We have successfully extracted the features of short URLs from tweets. These features where very useful for classification using Naive 

Bayes, J48 and AdaboostM1. We observed the results of Naive Bayes classifier is best among J48, AdaboostM1 and compare to Virus Total. 

The work covered in this paper is up to the software handling and need to find malicious URLs manually. Many short URLs redirect the 

URLs to malicious content. To overcome this hazardous situation, we can develop a system which will connected to network, by which the 

incoming short URL will be automatically scanned. 
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